Regional Priority Based Anomaly Detection using Autoencoders

نویسندگان

  • Shruti Mittal
  • Dattaraj Rao
چکیده

In the recent times, autoencoders, besides being used for compression, have been proven quite useful even for regenerating similar images or help in image denoising. They have also been explored for anomaly detection in a few cases. However, due to location invariance property of convolutional neural network, autoencoders tend to learn from or search for learned features in the complete image. This creates issues when all the items in the image are not equally important and their location matters. For such cases, a semi supervised solution regional priority based autoencoder (RPAE) has been proposed. In this model, similar to object detection models, a region proposal network identifies the relevant areas in the images as belonging to one of the predefined categories and then those bounding boxes are fed into appropriate decoder based on the category they belong to. Finally, the error scores from all the decoders are combined based on their importance to provide total reconstruction error.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Early Failure Detection for Predictive Maintenance of Sensor Parts

Maintenance of a sensor part typically means renewal of the sensor in regular intervals or replacing the malfunctioning sensor. However optimal timing of the replacement can reduce maintenance costs. The aim of this article is to suggest a predictive maintenance strategy for sensors using condition monitoring and early failure detection based on their own collected measurements. Three different...

متن کامل

Analyzing Business Process Anomalies Using Autoencoders

Businesses are naturally interested in detecting anomalies in their internal processes, because these can be indicators for fraud and inefficiencies. Within the domain of business intelligence, classic anomaly detection is not very frequently researched. In this paper, we propose a method, using autoencoders, for detecting and analyzing anomalies occurring in the execution of a business process...

متن کامل

Detection of Mo geochemical anomaly in depth using a new scenario based on spectrum–area fractal analysis

Detection of deep and hidden mineralization using the surface geochemical data is a challenging subject in the mineral exploration. In this work, a novel scenario based on the spectrum–area fractal analysis (SAFA) and the principal component analysis (PCA) has been applied to distinguish and delineate the blind and deep Mo anomaly in the Dalli Cu–Au porphyry mineralization area. The Dalli miner...

متن کامل

Dynamic anomaly detection by using incremental approximate PCA in AODV-based MANETs

Mobile Ad-hoc Networks (MANETs) by contrast of other networks have more vulnerability because of having nature properties such as dynamic topology and no infrastructure. Therefore, a considerable challenge for these networks, is a method expansion that to be able to specify anomalies with high accuracy at network dynamic topology alternation. In this paper, two methods proposed for dynamic anom...

متن کامل

Anomaly Detection using One-Class Neural Networks

We propose a one-class neural network (OC-NN) model to detect anomalies in complex data sets. OC-NN combines the ability of deep networks to extract progressively rich representation of data with the one-class objective of creating a tight envelope around normal data. The OC-NN approach breaks new ground for the following crucial reason: data representation in the hidden layer is driven by the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018